Основы биотехнологии. 2. Животные клетки in vitro

11.04.2007124120

См. начало учебника «Основы биотехнологии».


То, что клетки тканей высших животных можно выделить из организма и затем создать условия для роста и воспроизводства их in vitro, стало понятно в начале 20 века, когда смогли завести и поддерживать первые клеточные культуры.


Изначально культуры клеток приспособили под выращивание и репродукцию в таких клетках вирусов. Как известно, вирусы имеют обыкновение размножаться только в живых клетках, поэтому их репродуцируют, как это ни грустно, в живых организмах. Есть вирусы, которые можно размножать в эмбрионах куриного яйца, но их спектр очень невелик, так что более всего страдают от подобных экспериментов лабораторные мыши. Совершенствование методик культивирования клеток животных позволило использовать их для накопления больших количеств вирусного материала с целью производства из него вакцин. Сейчас же стало возможным вставить в клетки специфические экзогенно полученные гены и получить их экспрессию, а также подтверждена возможность выращивания в культуре из одиночной клетки целой популяции. Когда такие популяции получают из клетки, выделявшей в окружающую среду антитела, то все молекулы антител в надосадочной жидкости одинаковы. Первое – дает возможность получения трансгенных клеток, тканей или организмов, второе – незаменимо для получения моноклональных антител. Для чего они нужны – постараемся рассмотреть в дальнейших выпусках.


Чтобы показать способность клеток животных расти и делиться в культуре, потребовалось овладеть рядом подходов и методик:


1. Методики получения клеток, свободных от экзогенных прокариотов и грибов.

2. Методики разработки среды, в которых рост «вырезанных из ткани» или изолированных клеток не подавляется.

3. Методики наблюдения за клетками в динамике их развития.

4. Методики непрерывного культивирования культур клеток животных in vitro и поддержания их свободными от других биологических агентов.


Идея о том, что клетки тканей животных можно выделить из организма и затем создать условия для роста и воспроизводства их in vitro, возникла на базе концепции, принадлежащей Клоду Бернару. Он предположил, что не только живые организмы способны сохранять постоянство внутренних условий, вне зависимости от изменений в окружающей среде. Клетка вне организма животного тоже будет стремиться поддерживать свои внутренние условия. Если различия между внутренними и внешними условиями будут незначительными, то высока вероятность роста и деления клетки. Такое понимание явления приводит к необходимости разработки сред, способных поддерживать и стимулировать рост клеток вне организма.


Чуть позже, в 1885 году, У. Ру (W. Roux) показал возможность сохранения вне организма живых тканей на практике. Он сохранял в жизнеспособном состоянии оболочку куриного эмбриона в теплом физиологическом растворе. Впоследствии он стал автором, активно публиковавшимся по проблемам эмбриологии in vitro. Позднее, в 1897 г., Леб (Loeb) поддерживал в жизнеспособном состоянии клетки крови и соединительной ткани в пробирках с сывороткой и плазмой крови. Льюнгрен (1898) показал возможность поддержания эксплантатов кожи человека в жизнеспособном состоянии в кислой среде с сохранением способности к реимплантации. Дополнительные эксперименты были проведены Джолли (1903), наблюдавшим деление клетки в висячей капле, содержащей лейкоциты саламандры, а Биб и Эвинг (1906) подтвердили это при пересадке лимфосаркомной ткани собаки.


Продолжая работы Ру, Росс Харрисон усовершенствовал методику «висячей капли». Он использовал небольшие кусочки ткани, отторгнутые от медуллярного сосуда лягушки к внедренные в ее лимфатический тромб, и выдерживал их в виде капли на нижней стороне покровного стекла, расположенного поверх углубления в предметном стекле. В 1907 г. ему удалось наблюдать с помощью такой «камеры» рост нервных клеток в течение нескольких недель; он установил, что скорость роста этих клеток составляет 20 мкм за 25 мин. В то время как эксперименты Харрисона были направлены на то, чтобы получить ответы на вопросы, относящиеся к физиологии нервных клеток лягушки, методика, которой он пользовался, была применена Барроузом для других клеток тканей теплокровных животных. Этот исследователь в 1910 г. вместо лимфатического тромба использовал тромб плазмы курицы.


В 1913 г. Алексис Каррель применил плазму крови, обогащенную экстрактом эмбриона. Добавка такого экстракта ускоряла рост тканей. Примененная методика обеспечивала значительно большую вероятность успеха, чем та, которую использовали Левис (1911) и Рид (1908 г.). Рид готовила культуры клеток из костного мозга морской свинки и пыталась выращивать эксплантаты на среде определенного химического состава. Работа Карреля привлекла большое внимание, так как она была опубликована под интригующим названием – культивирование «бессмертных» клеток. Инкубация клеток сердца куриною эмбриона была начала 17 января 1912 г. Пересев клеток продолжил Эблинг, как он сам заявлял, работая с ними 34 года. Поскольку Каррель был хирургом, весьма сведущим в вопросах асептики, он смог внести существенный вклад в культивирование клеток животных in vitro. В то же время организация и технические условия проводимых экспериментов были очень громоздкими. Ассистенты Карреля были одеты в длиннополые резиновые халаты темного цвета с капюшонами для полного прикрытия головы. Процедуры были длительными и отягощенными многими деталями. В результате тех требований, которые выдвигались автором в отношении сложных мер предосторожности для предотвращения контаминации, вокруг данного предмета создалась атмосфера таинственности и исключительности, что скорее тормозило прогресс, чем способствовало ему. Тем не менее, им было достигнуто многое. В частности, даже при отсутствии антибиотиков он добился успеха в пересадке клеток, используя хирургическую технику для отторжения отдельных колоний и переноса их в новые условия роста. Каррель также продемонстрировал своим коллегам научное значение тех наблюдений, которые могут быть сделаны в процессе пересадки клеток.


В ходе проделанных работ был внесен ряд поправок в рецептуру среды культивирования. В частности, Тирод модифицировал раствор Рингера и в дополнение к куриной сыворотке и эмбриональному экстракту стал использовать коагулят фибрина. Для наблюдения за делящимися клетками животных Канти в 1928 г. разработал метод кинофотомикрографии. В этот же период был разработан дополнительный и очень существенный подход в технике работы с клетками. Имеется в виду применение трипсина для высвобождения клеток из тканевой матрицы, в которой они находятся. Однако эта методика не находила признания до тех пор, пока в 1937 г. Симмс и Стидлман использовали ее для пассирования клеток между культурами плазмы. Эта методика дает возможность успешно применять в культурах индивидуальные клетки, а не ткани.


Впервые клоны клеток в культуре из одиночной клетки были получены Эрлом с сотрудниками в 1948 году. Игл (1955) систематически исследовал пищевые потребности клеток в условиях. До тех пор, пока в 1961 г. Хейфлик и Мурхед не выделили линию диплоидных клеток человека (НДС) WI-38, считалось, что один раз установившаяся клеточная линия имеет неограниченное время жизни. Относительно линии WI-38 было показано, что период ее существования в культуре ограничивается приблизительно 50 удваиваниями популяции. Перед отмиранием популяции для клеток этой линии характерен феномен старения. Однако при отмирании эти клетки оставались диплоидными и не имели признаков злокачественных изменений. Клетки, выделенные из раковых опухолей или трансформированные в ходе культивирования, характеризуются «бессмертностью» и коррелируют с гетероплоидностью. Первые суспензионные культуры клеток животных, как правило, основывались на клетках злокачественных тканей. Это – клетки HeLa, выделенные из раковой опухоли шейки матки человека. Перевиваемая линия карциномы шейки матки была выделена еще в 1952 году Джеем с сотрудниками, она используется и в настоящее время во многих лабораториях мира.


Последующий этап в истории культивирования диплоидных клеток человека связан с установлением факта, что они являются генетически стабильными и свободными от всех известных латентных и онкогенных вирусов. Поэтому линии диплоидных клеток человека разрешено применять для получения продуктов, предназначаемых для людей. Эта догма остается действующей и в настоящее время, хотя новейшие открытия отчетливо показали присутствие в клетках, выделенных из нормальных тканей, потенциальных онкогенов, идентичных тем, которые найдены в таких известных онкогенных вирусах, как вирус саркомы Рауса и вирус саркомы Молони. Раус еще в 1910 году индуцировал опухоль, использовав профильтрованный экстракт куриной опухоли. Эта опухоль была индуцирована РНК-вирусом (вирус саркомы Рауса). Позднее было установлено, что ряд вирусов способен индуцировать возникновение опухолей, такие вирусы были названы онкогенными.


В соответствии с целями и задачами экспериментальной работы можно выделить два направления культивирования животных клеток:


– культуры клеток;

– культуры органов и тканей (органные культуры).


Культуры клеток лишены структурной организации, теряют характерную гистиотипическую архитектуру и связанные с ней биохимические признаки и обычно не достигают равновесного состояния при отсутствии специальных условий. Клетки в культурах размножаются, что обеспечивает получение большой массы клеток, затем их идентифицируют (по фенотипическим признакам, путем выращивания в селективной среде, генотипически), разделяют на идентичные параллели и, если это необходимо, сохраняют. Динамические свойства культивируемых клеток часто трудно контролировать, также трудно реконструировать in vitro некоторые клеточные взаимодействия, наблюдаемые in vivo. В связи с этим некоторые исследователи предпочитают использовать клеточные системы, сохраняющие структурную целостность исходной ткани.


Список типов клеток, которые уже введены в культуру, достаточно велик. Это элементы соединительной ткани человека (фибробласты), скелетные ткани (кость и хрящи), скелетные, сердечные и гладкие мышцы, эпителиальные ткани (печень, легкие, почки и др.), клетки нервной системы, эндокринные клетки (надпочечники, гипофиз, клетки островков Лангерганса), меланоциты и различные опухолевые клетки.


Популяция клеток не всегда гомогенна и обладает фиксированным фенотипом. Некоторые культуры, например, кератиноциты эпидермиса, содержат стволовые клетки, клетки-предшественники и кератинизированные чешуйчатые клетки. В такой культуре происходит постоянное обновление за счет стволовых клеток, пролиферация и созревание клеток-предшественников, а также необратимая дифференцировка, сопровождающаяся "слущиванием" чешуйчатых клеток в культуральную среду.


Какую ткань лучше брать для введения в культуру, взрослую или эмбриональную, нормальную или опухолевую?


Культуры, полученные из эмбриональных тканей, характеризуются лучшей выживаемостью и более активным ростом по сравнению с соответствующими зрелыми тканями. Причиной этого служит низкий уровень специализации и наличие реплицирующихся клеток-предшественников в эмбрионах. Пролиферативная способность взрослых тканей ниже, они содержат больше неделящихся специализированных клеток. Получение первичных культур клеток взрослых тканей и их размножение является более сложной задачей, продолжительность жизни таких культур, как правило, невелика. Нормальные ткани дают начало культурам с ограниченным временем жизни, тогда как культуры, полученные из опухолей, способны пролиферировать неограниченно долгое время. Дифференцировка нормальных клеток в культуре сопровождается обычно полным прекращением пролиферации клеток. В культурах опухолевых клеток возможна частичная дифференцировка при сохранении способности к пролиферации.


Вопросы том, как ведут себя клетки в культуре, каковы их потребности в факторах среды и чем отличаются культивирование in vitro тканей или органов, мы рассмотрим позднее. Дополнительную информацию о культивировании животных клеток вы можете почерпнуть на сайте «Основы биотехнологии»


Продолжение: Условия культивирования животных клеток in vitro.


Ваш комментарий:
Только зарегистрированные пользователи могут оставлять комментарии. Чтобы оставить комментарий, необходимо авторизоваться.
Вернуться к списку статей